疊合封裝結構受功率與溫度耦合 循環測試之熱傳特性與疲勞可靠 度評估 _{康鴻、李長祺、賴逸少、王解君/日月光集團研發中心核心實驗室}

摘要

本研究以熱傳-應力循序耦合分析探討疊合封 裝結構迴銲於測試電路板後,在功率與溫度耦合循 環測試下,晶片功率大小、開啟方式與順序對錫球 接點可靠度的影響,並與純粹溫度循環測試所引致 之可靠度相比較。從分析結果可知,功率與溫度耦 合循環所引致的溫度曲線偏離純粹溫度循環曲線的 程度對其疲勞可靠度的影響非常顯著。

關鍵字:疊合封裝、功率與溫度耦合循環測試、可 靠度、有限元素分析。

1. 前言

基於手持式電子產品輕薄短小的迫切需求,趨 使小尺寸系統級封裝(system-in-package, SiP)的快 速成長。因傳統摩爾理論所推測的平面整合晶片已 達極限,新型態的系統級封裝趨向於在厚度方向的 整合[1]。目前技術上可行的系統級封裝型態可分為 兩大類:多晶片封裝(multi-chip-package, MCP)和 疊合封裝(package-on-package, PoP)。為了節省空 間,多晶片封裝整合多個晶片在同一基板上來取代 多個封裝。另一方面,疊合封裝包含兩個以上有功 能關聯的封裝體以堆疊方式整合成為一個模組,且 個別封裝經封裝、測試後才以表面黏著方式疊合, 可減少製程風險。

封裝業界慣以加速溫度循環測試(accelerated

thermal cycling test, ATC or TCT)[2]評估上板封裝體 錫球接點的疲勞可靠度。此測試針對試片循環加溫 與降溫,模擬環境溫度變化對錫球接點可靠度的影 響。然而直觀上晶片採循環開啟、關閉方式產生熱 效應之功率循環測試(power cycling test)較能趨 近真實使用狀態。因此電子工程設計發展聯合協會 (Joint Electron Device Engineering Council, JEDEC)於 近年發表了功率與溫度耦合循環測試(coupled power and thermal cycling test)規範JESD22-A105C[3],在 環境溫度循環變化條件下同時使晶片循環運作,以 整合評估環境溫度變化及晶片實際運作的熱效應對 封裝體可靠度的影響。

因疊合封裝對封裝業界而言尚屬新穎結構,也 因其複雜性,相關數值可靠度評估[4,5]並不多見。本 文即以熱傳-應力循序耦合分析[6,7]探討上板疊合封 裝在功率與溫度耦合循環測試下,晶片功率大小、 開啟方式與順序對晶片和錫球接點熱傳特性和錫球 接點可靠度的影響,並與純粹溫度循環測試引致之 熱傳特性和可靠度相比較。

2. 有限元素分析

本研究分析對象為迴銲上板後之疊合封裝體, 如圖一所示。此疊合封裝體由上方尺寸為14 × 14 × 0.48 mm³之超薄型細間距球柵陣列封裝體(VFBGA) 粘合於下方尺寸為14 × 14 × 0.55 mm³之堆疊封裝式 球柵陣列封裝體(SPBGA)而成。上方之VFBGA包含

圖二 八分之一對稱三維有限元素模型

四個尺寸為4.5 × 4.5 × 0.15 mm³之兩兩排列且相距1 mm的矽晶片與一14 × 14 × 0.13 mm³雙層基板,基 板上的低共熔(eutectic)錫鉛63Sn-37Pb錫球呈環型 陣列分布以避開位於下方SPBGA的封膠部分。下方之 SPBGA則包含一6.25 × 6.25 × 0.1 mm³矽晶片與一14 × 14 × 0.3 mm³四層基板,藉正方矩陣分布之低共 熔錫鉛錫球?銲於尺寸為101.5 × 101.5 × 1.6 mm³之 測試板上。錫球接點間距皆為0.65 mm; 迴銲後直徑 則為0.35 mm。VFBGA和SPBGA之間的錫球接點高度 和開孔直徑分別為0.4 mm和0.3 mm而SPBGA和測試板 之間的錫球接點高度和開孔直徑分別為0.15 mm和0.3 mm。

圖二所示為此上板疊合封裝的八分之一對稱三 維有限元素模型,包含76,882個線性六面體元素與 282609自由度。基板與測試板的銅導線、核心層和 防銲綠漆分別以整體薄層板考慮。本研究之有限元 素分析使用ANSYS v. 10.0。此疊合封裝體各組成元件 的熱傳材料性質列於表一。晶片的熱傳導特性以絕 對溫度T的函數表示。各組成元件彈性性質則列於表 二,部份元件的楊氏模數與溫度呈線性:a0+a1T。 基板之溫度相依楊氏模數、熱膨脹係數以及玻璃轉 換溫度由動態熱機械分析儀(DMA)與熱機械分析 儀(TMA)量測而得。圖三所示為基板之溫度相依 楊氏模數。因錫球接點的變形在封裝體工作溫度範 圍由穩態潛變之點塑性行為所主導,因此粘塑性應 變或應變能常作為疲勞可靠度的評估指標。本文以 安南德(Anand)黏塑性組成律配合Darveaux [8]所提 出的參數來描述低共熔錫鉛錫球的穩態潛變行為。

表三列出本研究所比較之七種測試條件。測試 條件TO為溫度循環範圍在-40 ℃至125 ℃、升降溫 與持溫各十五分鐘之純粹溫度循環測試(循環週期 為六十分鐘)。此測試由室溫開始,先降溫、持溫 再升溫。功率與溫度耦合循環測試即以此溫度循環 為基礎加上晶片功率循環而成。功率循環延時為開 啟五分鐘、關閉五分鐘,並以此週期進行循環。測

表一組成元件熱傳導性質			
組成元件	密度 (kg/m³)	熱傳導係數 (W/m ℃)	比熱 (W s/kg ℃)
矽晶片	2.33	150(T/300) ^{-4/3}	810
測試板	1.88	18 (平面方向) 0.35 (厚度方向)	1050
封膠	1.88	0.7	1050
錫球接點	8.4	51	175
雙層基板	2.0	24.3 (平面方向) 0.52 (厚度方向)	1600
四層基板	2.0	37.2 (平面方向) 0.5 (厚度方向)	1600

組成元件	楊 氏 模 數 (MPa)	熱膨脹 係數 (ppm/℃)	玻璃轉換 溫度 (℃)	泊桑比	
矽晶片	131	2.8		0.3	
測試板	$a_0 = 27.92$	16		0.11	
(半面方向)	$a_1 = -0.0037 \text{ K}^{-1}$				
測試板	$a_0 = 12.2$	84		039	
(厚度方向)	a ₁ = -0.016 K ⁻¹	01		0.59	
封膠	20 @ 25℃ 1.2 @ 240℃	10/40	180	0.3	
錫球接點	a0 = 75.84 $a1 = -0.15 \text{ K}^{-1}$	24.5		0.35	
雙層基板	[圖三]	15.0		0.2	
四層基板	[圖三]	15.7		0.2	

表三 測試條件					
測試條件	功率(W)	功率提供晶片	功率循環順序		
TO					
P1	0.25		同步		
P2	0.5				
P3		兩晶片	SPBGA晶片		
			先開啟		
P4			VFBGA晶片先		
			開啟		
P5		SPBGA 晶片			
P6		VFBGA 晶片			

		表四	疲勞壽命預济	則	
測試	∆Wave	N0	dl/dN	Ν	Nff
條件	(psi)	(cycles)	(in/cycle)	(cycles)	(cycles)
T0	52.07	2129	69.45	6449	3225
P1	54.12	2000	72.29	6150	3075
P2	57.89	1793	77.54	5663	2831
Р3	55.81	1903	74.64	5923	2961
P4	56.44	1869	75.51	5842	2921
P5	54.26	1992	72.48	6131	3065
P6	54.83	1958	73.28	6053	3026

圖三 基板溫度相依楊氏模數

試條件P1和P2分別代表同步提供0.25和0.5 W於兩晶 片。P3和P4為交互提供0.25 W於兩晶片但它們的順序 相反:P3為提供0.25 W於SPBGA晶片五分鐘後關閉, 緊接著提供0.25 W於VFBGA晶片五分鐘後關閉之功 率循環;P4則相反。P5和P6分別代表僅提供0.5 W於 SPBGA和VFBGA晶片。所有的分析都從25℃開始,而 封裝體參考溫度設為封膠固化溫度175℃。

3. 熱傳特性

功率循環測試是一種暫態熱傳過程。由於ANSYS 前無涵蓋粘塑性行為的熱傳-應力直接耦合元素,因 此本研究使用循序耦合分析,即先分析暫態溫度場再 將其內插至熱應力模型進行後續可靠度分析[6,7]。

熱傳分析邊界條件如下:對稱面絕熱;在自 然對流條件下,表面熱傳係數為h,=f(Ts-Ta)ⁿ/L_n[9], 其中Ts為元件表面溫度、Ta為環境溫度。特徵長 度Lch單位為m。水平面Lch=WL/Z(W+L),W和L分 別為其寬度和長度;垂直面Lch=H,H為垂直面長 度。式中常數f與n在水平面朝上時為f = 1.336與n = 0.25; 水平面朝下時為f = 0.668與n = 0.25 [9]。垂 直面時為f = 0.944 與n = 0.35 [10];輻射熱傳係數為 hr=σE[(Ts+Ta)(TS²+Ta²)],其中史帝芬-波茲曼(Stefan-Boltzmann) 常數、E為輻射率。測試板和封裝體 的輻射率分別為0.9和0.95。因溫度循環使得Ta隨時間 變化,傳統的固定Ta的暫態熱傳分析明顯無法滿足 功率與溫度耦合測試的條件。為了使暴露於空氣的 元件表面可給定足夠的薄膜常數,我們使用表格式 邊界條件的給定方式處理,詳見Wang et al. [11]。

圖四與圖五分別為各功率與溫度耦合循環測試 條件與純粹溫度循環測試條件T0所引致之VFBGA晶片 結點溫度(junction temperature)與SPBGA晶片結點 溫度歷時比較。圖中虛線部分為溫度循環曲線。由 圖明顯可知加入功率循環後,晶片結點溫度與溫度 循環曲線即產生差異;此差異會隨著功率的增加而 加劇。值得注意的是雖然VFBGA和SPBGA晶片在疊合 封裝體內無直接的接觸,兩封裝體間的錫球仍可提 供有效熱傳路徑。因此,如P5僅提供功率至SPBGA 晶片,但亦會導致VFBGA元件的溫度波動,反之亦 然。此外,如P3和P4交互提供功率至VFBGA和SPBGA 晶片也同樣致使在當時未作動的晶片溫度產生波動 而偏離純粹溫度循環曲線。因主要熱傳路徑為由封 裝體向下往測試板,所以在測試條件P1、P2、P3和 P4下,同步或交互提供功率至兩晶片,VFBGA晶片的 結點溫度都比SPBGA晶片者高。

4. 疲勞可靠度

求得試片經歷之暫態溫度場後即可將其內插至 熱應力模型以進行後續疲勞可靠度分析。疲勞壽命的 預測基於關鍵錫球接點上下界面涵蓋25.4 µm厚之區域 在一次測試循環中平均所累積的粘塑性應變能密度 (△W_{aw}), 並使用Darveaux [8]所提出的方式求解:

-、裂縫發生時之循環數: $N_{a}=a\Delta W_{a}^{b}$

- 二、 裂縫傳播速率: $\frac{dI}{dN} = c\Delta W_{ave}^{d}$ 三、 特徵壽命: $N = N_{o} + \frac{I}{dI/dN}$
- 四、未失效壽命: $N_{\text{ff}} = \frac{N}{2}$

其中I為錫球接點截面尺寸,本例為 0.3 mm。 其他參數為 a = 56300 cycles/psi^b、b = -1.62、c = 3.34 10⁻⁷ in/cycle/psi^d、d = 1.04。這些參數皆非公制,運 算時需加以轉換。

圖六顯示測試條件P1的錫球在最後一個狀態下 的粘塑性應變能密度分佈和關鍵錫球的位置。表三 所列舉的所有測試條件經分析可發現內緣錫球陣列 接點累積較多粘塑性應變能密度,因此較易發生疲 勞破壞。從分析也可得知較大點塑性應變能密度集 中在關鍵錫球接點的下側。此外,VFBGA關鍵錫球 接點所累積的粘塑性應變能密度高於SPBGA關鍵錫球 接點的,因此疊合封裝的可靠度由VFBGA關鍵錫球 接點所控制。所以此關鍵錫球接點下側涵蓋25.4µm 的區域在一次測試循環中平均所累積的粘塑性應變 能密度即用以評估疲勞壽命。藉由前述預測方法, 各測試條件所引致的疲勞壽命列於表四及圖七。 由結果可知純粹溫度循環測試TO引致最高的疲勞壽 命,而耦合功率循環後對疲勞壽命有一定程度的折

減。雖測試條件P3和P4具有相位相反的溫度歷時, 但其相對於純粹溫度循環的溫度差距相似,故引致 的疲勞壽命也相當。此外,P3和P4的溫度差距比P5 大,故P3和P4引致的疲勞壽命較P5者短;相同的情 形也發生於將P5和P6與其他測試條件比較。

5. 結論

本研究以熱傳-應力循序耦合分析探討上板疊 合封裝在功率與溫度耦合循環測試下,晶片功率開 啟方式與順序對錫球接點可靠度的影響,並與純粹 溫度循環引致之可靠度相比較。

由數值分析結果可知加入功率循環後, 晶片結 點溫度與溫度循環曲線即產生差異; 此差異會隨著 功率的增加而加劇。值得注意的是交互提供功率至 VFBGA和SPBGA晶片也同樣致使在當時無作動的晶片 溫度波動而偏離純粹溫度循環曲線。因主要的熱傳 路徑為由封裝體向下往測試板,所以無論是同步或 交互提供功率至兩晶片, VFBGA晶片的接點溫度都 較SPBGA晶片者高。

此疊合封裝的可靠度由VFBGA的關鍵錫球接點 所控制。由結果可知純粹溫度循環測試引致之疲勞 壽命最長,而功率與溫度耦合循環所引致的溫度曲 線偏離純粹溫度循環曲線的程度對其疲勞壽命的影 響非常顯著。

6.參考文獻

- 1. H.-M. Tong and Y.-S. Lai, "Today' s State-of-the- Art Integration," Adv. Microelectron., Vol. 34, No. 3, pp. 26-31, 2007.
- 2. JEDEC Solid State Technology Ass °Ciation, Temperature cycling, JESD22-A104-B, 2000.
- 3. JEDEC Solid State Technology Ass[®]Ciation, Power and temperature cycling, JESD22-A105C, 2004.
- 4. Y.-S. Lai, T. H. Wang and C.-C. Wang, "Optimization of Thermomechanical Reliability of Board-level Package-

on-Package Stacking Assembly," IEEE Trans. Comp. Pack. Technol., Vol. 29, No. 4, pp. 864-868, 2006.

- Y.-S. Lai, C.-L. Yeh and C.-C. Wang, "Examination of Boardlevel Drop Reliability of Package-on- Package Stacking Assemblies of Different Structural Configurations," Microelectron. Engng, Vol. 84, No. 1, pp. 87-94, 2007.
- 6. Y.-S. Lai, T. H. Wang and C.-C. Lee, "Thermal- mechanical Coupling Analysis for Coupled Power and Thermal Cycling Reliability of Chip-scale Packages," Pr°C. EuroSimE 2005, Berlin, Germany, pp. 539-544, 2005.
- 7.T. H. Wang, Y.-S. Lai and Y.-C. Lin, "Reliability Evaluations for Board-level Chip-scale Packages Under Coupled Power and Thermal Cycling Test Conditions," Microelectron. Reliab., in press; doi: 10.1016/ j.microrel.2007.02.011.
- R. Darveaux, "Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction," J. Electron. Pack., ASME, Vol. 124, No. 3, pp.147-154, 2002.
- 9. B. A. Zahn and R. P. Stout, "Evaluation of Isothermal and Isoflux Natural Convection Coefficient Correlations for Utilization in Electronic Package Level Thermal Analysis," Pr°C. 13th Annual IEEE Semicon. Thermal Measure. Manage. Symp., Austin, TX, pp. 24-31, 1997.
- B. M. Guenin, R. C. Marrs and R. J. Molnar, "Analysis of a Thermally Enhanced Ball Grid Array Package," IEEE Trans. Comp., Pack., Manuf. Technol. – Part A, Vol. 18, No. 4, pp. 749-757, 1995.
- T. H. Wang, C.-C. Lee, Y.-S. Lai and Y.-C. Lin, "Transient Thermal Analysis for Board-level Chip-scale Packages Subjected to Coupled Power and Thermal Cycling Test Conditions," J. Electron. Pack., ASME, Vol. 128, No. 3, pp. 281-284, 2006.